首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58014篇
  免费   4440篇
  国内免费   1657篇
  2023年   281篇
  2022年   291篇
  2021年   1338篇
  2020年   971篇
  2019年   1189篇
  2018年   1522篇
  2017年   1294篇
  2016年   2002篇
  2015年   3038篇
  2014年   3578篇
  2013年   3906篇
  2012年   4973篇
  2011年   4758篇
  2010年   3084篇
  2009年   2767篇
  2008年   3711篇
  2007年   3539篇
  2006年   3085篇
  2005年   2883篇
  2004年   2638篇
  2003年   2319篇
  2002年   2018篇
  2001年   1528篇
  2000年   1409篇
  1999年   1145篇
  1998年   525篇
  1997年   449篇
  1996年   306篇
  1995年   265篇
  1994年   249篇
  1993年   203篇
  1992年   358篇
  1991年   322篇
  1990年   286篇
  1989年   247篇
  1988年   193篇
  1987年   172篇
  1986年   137篇
  1985年   114篇
  1984年   86篇
  1983年   92篇
  1982年   72篇
  1981年   60篇
  1980年   59篇
  1979年   79篇
  1978年   56篇
  1977年   53篇
  1976年   45篇
  1975年   44篇
  1974年   65篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
41.
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a major pathogen of the economic insect silkworm, Bombyx mori. Virus‐encoded microRNAs (miRNAs) have been proven to play important roles in host–pathogen interactions. In this study we identified a BmCPV‐derived miRNA‐like 21 nt small RNA, BmCPV‐miR‐1, from the small RNA deep sequencing of BmCPV‐infected silkworm larvae by stem‐loop quantitative real‐time PCR (qPCR) and investigated its functions with qPCR and lentiviral expression systems. Bombyx mori inhibitor of apoptosis protein (BmIAP) gene was predicted by both target prediction software miRanda and Targetscan to be one of its target genes with a binding site for BmCPV‐miR‐1 at the 5′ untranslated region. It was found that the expression of BmCPV‐miR‐1 and its target gene BmIAP were both up‐regulated in BmCPV‐infected larvae. At the same time, it was confirmed that BmCPV‐miR‐1 could up‐regulate the expression of BmIAP gene in HEK293T cells with lentiviral expression systems and in BmN cells by transfecting mimics. Furthermore, BmCPV‐miR‐1 mimics could up‐regulate the expression level of BmIAP gene in midgut and fat body in the silkworm. In the midgut of BmCPV‐infected larvae, BmCPV‐miR‐1 mimics could be further up‐regulated and inhibitors could lower the virus‐mediated expression of BmIAP gene. With the viral genomic RNA segments S1 and S10 as indicators, BmCPV‐miR‐1 mimics could up‐regulate and inhibitors down‐regulate their replication in the infected silkworm. These results implied that BmCPV‐miR‐1 could inhibit cell apoptosis in the infected silkworm through up‐regulating BmIAP expression, providing the virus with a better cell circumstance for its replication.  相似文献   
42.
Although acupuncture therapy is widely used in traditional Asian medicine for the treatment of diverse internal organ disorders, its underlying biological mechanisms are largely unknown. Here, we investigated the functional involvement of acupuncture stimulation (AS) in the regulation of inflammatory responses. TNF-α production in mouse serum, which was induced by lipopolysaccharide (LPS) administration, was decreased by manual acupuncture (MAC) at the zusanli acupoint (stomach36, ST36). In the spleen, TNF-α mRNA and protein levels were also downregulated by MAC and were recovered by using a splenic neurectomy and a vagotomy. c-Fos, which was induced in the nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus nerve (DMV) by LPS and electroacupuncture (EAC), was further increased by focal administration of the AMPA receptor blocker CNQX and the purinergic receptor antagonist PPADS. TNF-α levels in the spleen were decreased by CNQX and PPADS treatments, implying the involvement of inhibitory neuronal activity in the DVC. In unanesthetized animals, both MAC and EAC generated c-Fos induction in the DVC neurons. However, MAC, but not EAC, was effective in decreasing splenic TNF-α production. These results suggest that the therapeutic effects of acupuncture may be mediated through vagal modulation of inflammatory responses in internal organs.  相似文献   
43.
Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors.  相似文献   
44.
A recombinant DNA, encoding the chimeric protein of the signal sequence for bifidobacterial α-amylase mature pediocin PA-1, was introduced into Bifidobacterium longum MG1. Biologically active pediocin PA-1 was successfully secreted from the strain and showed bactericidal activity against Listeria monocytogenes and the same molecular mass as native pediocin PA-1.  相似文献   
45.
46.
47.
48.
49.
50.
Changsung Kim 《BMB reports》2015,48(5):256-265
Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号